A Comparison between Drifter and X-Band Wave Radar for Sea Surface Current Estimation

نویسندگان

  • Giovanni Ludeno
  • Carmelo Nasello
  • Francesco Raffa
  • Giuseppe Ciraolo
  • Francesco Soldovieri
  • Francesco Serafino
چکیده

This paper deals with exploitation of the wave radar system for sea surface current estimation in a coastal zone. In particular, we present the results of the processing of the radar data collected by an X-band marine radar installed in Capo Granitola site, which is located in the south-west part of Sicily, on 15 May 2015. The effectiveness of the data processing is analyzed by comparing the wave radar estimated sea surface current with that provided by the Lagrangian drifters along its movement trajectory. During the measurement campaign, three drifter releases are carried out and for each one the comparison is provided in terms of the mean error and standard deviation. In addition, we report the characteristic sea state parameters, in terms of peak wavelength (λp), peak direction propagation (θp), peak period (Tp) and significant wave height (Hs) of the dominant waves estimated by the wave radar system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Editorial for Special Issue "Radar Systems for the Societal Challenges"

The special issue (SI) “Radar Systems for the Societal Challenges” is an updated survey of recent advances in radar systems, encompassing several application fields and related to the impact on society. In fact, radar technology is now pervasive in society and is crucial for tackling social and economic issues for the wellbeing of the population. In fact, in addition to the classical applicatio...

متن کامل

High Resolution Current & Bathymetry Determined by Nautical X-Band Radar in Shallow Waters

The wave and current monitoring system WaMoS II is a remote sensing system based on a nautical X-Band radar generally used for navigation and ship traffic control. It has been used in recent years to monitor sea state information from moored platforms, coastal sites and moving vessels. A nautical radar can scan the sea surface over a large area (~ 10km ) with a high spatial (~7.5m) and temporal...

متن کامل

Bathymetry Determination via X-Band Radar Data: A New Strategy and Numerical Results

This work deals with the question of sea state monitoring using marine X-band radar images and focuses its attention on the problem of sea depth estimation. We present and discuss a technique to estimate bathymetry by exploiting the dispersion relation for surface gravity waves. This estimation technique is based on the correlation between the measured and the theoretical sea wave spectra and a...

متن کامل

Sea Surfaces Scattering by Multi-Order Small-Slope Approximation: a Monte-Carlo and Analytical Comparison

L-band electromagnetic scattering from two-dimensional random rough sea surfaces are calculated by first- and second-order Small-Slope Approximation (SSA1, 2) methods. Both analytical and numerical computations are utilized to calculate incoherent normalized radar cross-section (NRCS) in mono- and bi-static cases. For evaluating inverse Fourier transform, inverse fast Fourier transform (IFFT) i...

متن کامل

Ocean Wind and Wave Measurements Using X-Band Marine Radar: A Comprehensive Review

Ocean wind and wave parameters can be measured by in-situ sensors such as anemometers and buoys. Since the 1980s, X-band marine radar has evolved as one of the remote sensing instruments for such purposes since its sea surface images contain considerable wind and wave information. The maturity and accuracy of X-band marine radar wind and wave measurements have already enabled relevant commercia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016